

# **Vibratory Conveyors**

Trough conveyors Tube conveyors

with electric motor vibrators or electromagnetic drive



VIBRA MASCHINENFABRIK SCHULTHEIS GmbH & Co. Im großen Ahl 47 - 51 **D-63075 Offenbach am Main** Tel. 069/86 00 03-0 Fax 069/86 00 03 45

Zweigbetrieb Utzberg/Weimar Am Peterborn 3 **D-99428 Utzberg/Weimar** Tel. 03 62 03/5 12 58 Fax 03 62 03/5 12 59





Figure 2 A total of 37 vibratory tube conveyors feed and transport components and mixtures in a fully automatic foodstuffs production plant



Figure 3 Vibratory trough conveyor 1000 mm wide, 6 m long, with bar screen for separating oversized material

# **Vibratory Conveyors**

# The technology

The transport of material on vibrating conveyors depends on the vibration of a conveying bottom; the direction of this vibration and that of the bottom enclose the socalled angle of throw, while the vibration's vertical acceleration exceeds the gravitational acceleration.

Basic diagram of the conveying process

- s = amplitude of vibration
- $s_R$  = path of trough bottom
- s<sub>G</sub> = path of product conveyed

The behaviour of bulk materials transported on vibrating conveyors has already been the subject of numerous investigations. Since the interrelationships describing all product characteristics such as grain size, grain structure and grain distribution, bulk density, temperature, moist content etc. are still not fully clear, however, experimental studies are needed in special cases. The conveying capacities listed in the tables below are therefore to be seen only as typical for the example concerned and allow conclusions to be drawn only to a limited extent to other bulk materials. Conveying speeds generally vary between 5 and 15 m/min depending on the nature of the material to be handled. It should also be mentioned that the conveying capacity increases considerably with decreasing frequency at the same acceleration.

The linear motion required is generally generated either by electromagnetic vibrators with inherently linear motion or by synchronously contra-rotating out-of-balance motors, where the components of the circular motion standing perpendicular to the direction of transport cancel each other. Under appropriate conditions the synchronisation is achieved automatically, i.e. without the need to incorporate a special synchronising gear.

Thanks to their almost maintenance-free and low wear operation, easy control and cleaning and simple dust-proofing, vibrating conveyors are used today to efficiently convey countless products. Our vibrating conveyors have been in operation for many years wihout failure even under extreme conditions, e.g. handling materials heated to 600  $^{\circ}$ C, conveying and screening at -50  $^{\circ}$ C ambient temperature, under exclusion of air and even under vacuum.

Many types specially designed to solve process engineering tasks have helped our vibrating conveyors to gain an importance which extends far beyond pure conveying functions. Because of the enormous variety of possible applications, the following illustrative examples can only offer a brief summary of the application scope.



Figure 4 Robust series DV vibratory motors capable of continuous operation ensure problem-free long term operation

# **Design/Structures**

The so called free vibrating conveyors with effective lengths up to about 7.5 m consist of various types of conveying channels to which vibratory drives and spring elements are fitted. The drives` mounting plates are machined so that the drive cannot be stressed during fitting. This ensures long-term operation without maintenance.

Depending on the conditions of use, various designs can be selected to take account on the one hand of the properties of the conveyed materials (e.g. dust content, moisture) and on the other hand of the operating conditions (e.g. available space, cleaning cycle, inerting).

The most important configurations are:

#### Open conveyor troughs

Closed conveyor troughs (cover bolted or held by quick-release fasteners; flat sealing or removable sealing)

Conveyor tubes

with bolted end covers and flat sealing, or with end covers designed as doors with removable profile sealing

The most important standardised sizes are illustrated in the following dimensioned drawings and tables.

The standard versions are, of course, designed for conveying in one direction.. For transport that can be switched between two directions we offer reversible vibratory conveyors.

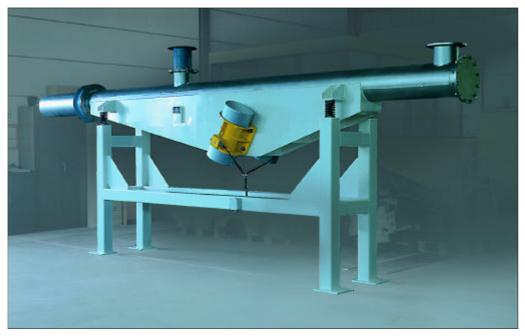



Figure 5: Pressure resistant vibratory tube conveyor with 300 mm diameter, 6 m long

## **Materials**


The troughs or tubes are made of mild steel, sanitary stainless steel, aluminium or special materials such as TITANIUM or Hastelloy.

# **Conveying capacity**

The following graphs illustrate typical values for conveying damp sand, particle size1-6mm, bulk density 1,6 t/m3.

> Curve 1: capacity of horizontal conveying Curve 2: capacity of conveying under an inclination of 8°

The limiting curves a and b refer to the smallest and largest conveying distance (resp. mass) for the same size of drive.



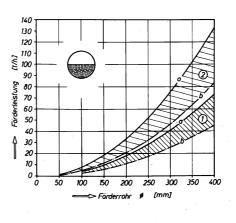



Figure 6: Conveying capacity



Figure 7: Vibratory trough conveyors 800 mm wide, 6.5 m long, used as bin discharging conveyors in a chemical factory



Figure 8 Electromagnetic vibrators of the MX series can be easily controlled during operation, and stop immediately when switched off. They are therefore suitable as drives for bin discharge conveyors and scales loading.



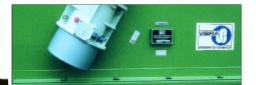
Figure 9 Specially constructed intermediate outlet with pneumatically operated cone stopper

# Vibrational insulation, Noise level

Elastic support or suspension of vibratory conveyors is provided by certified highly elastic helical springs or by rubber springs which have lower vibrational insulation performance but contribute to noise level reduction.

Sound levels below 65 dB(A) can be achieved by combining appropriate measures (e.g. optimal vibration frequency and rubber springs).

### Accessories


Numerous and accessory parts widen the range of possible applications and improve the convenience of operation:

Outlet flaps, outlet gates for intermediate outlets on conveying troughs and conveying tubes give additional flexibility to the application of vibratory conveying technology.

In order to elastically link fixed and vibrating parts, transition sleeves are available in a wide range of materials.

Electronic thyristor controllers are an essential element in the operation of vibratory conveyors with electromagnetic drive.

Electronic braking devices suppress the excessive vibrations that otherwise occur during running down of motor vibrators. Frequency converters permit control and regulation of the conveying capacity.



Depending on the operating conditions and the properties of the product intermediate outlets can be fitted with manually or pneumatically operated outlet flaps (Figures 10.1 and 10.3) or gates (Figure 10.2).

Figure 10.1





Figure 10.3



Figure 14 Numerous tasks sprinkling onto mats, belts, dough etc. can be handled with vibratory conveyors

The standard versions mentioned above are extended by reversible vibratory conveyors, vibratory conveyors with heat exchanging pans for indirect heat exchange and natural frequency conveyors for long distance conveying with a single drive unit.

#### **Reversible vibratory conveyors**

are suitable to applications where the direction of transport must be changed, e.g. for alternating feeding of hoppers, Big-Bags, containers, mixers etc. (Figure 12).

#### Vibratory conveyors with heat exchanging pans

Vibratory trough and tube conveyors as well as vibratory spiral conveyors are fitted with pressure-proof heat exchanging pans for cooling water, hot water, steam or thermal transfer oil, and can so be used for cooling and drying of bulk materials being transported. Figure 13 illustrates equipment for cooling ash and sand at 400 – 800 °C from a fluidised bed furnace. Details see Leflet No. P 113.

#### Natural frequency vibratory conveyors

For cases where conveying lengths of more than 7.5 m are to be covered with a single unit we manufacture natural frequency vibratory conveyors of extremely modern design (see Figure 11). Conveyors totally representing several kilometres, with individual lengths of up to 30 m, are operating smoothly in all parts of the world. Details see leaflet No. P 110E.

#### ER batching trough conveyors

have a thyristor controlled electromagnetic drive block, and are used for the feeding of bulk materials to processing and weighing equipment. The series includes 4 sizes for working loads up to about 40 kg. Details see leaflet No. P 92.



Figure 11: Natural frequency vibratory conveyor 300 mm wide, 12 m long

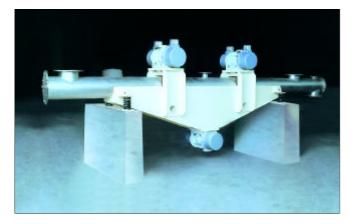



Figure 12 Reversible vibratory tube conveyor with 250 mm diameter, 4 m long



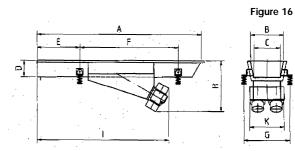
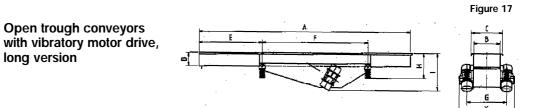

Figure 13 Vibratory conveyors for cooling ash and bed material 400-800 °C



Figure 15 The vibratory drives are also suitable for application intough and dusty environments

# Types

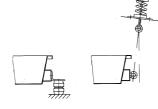

Open trough conveyors with vibratory motor drive, short version



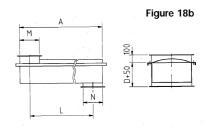
| Туре         | Principa | I dimensi | Weight | Drive |     |      |      |     |      |     |      |             |
|--------------|----------|-----------|--------|-------|-----|------|------|-----|------|-----|------|-------------|
|              | Α        | В         | С      | D     | Ε   | F    | G    | н   | Т    | к   | (kg) |             |
| FRU 16/ 5-DV | 1600     | 500       | 400    | 200   | 400 | 1000 | 700  | 800 | 1450 | 525 | 210  | 2 DV-B4/ 45 |
| FRU 16/ 8-DV | 1600     | 800       | 700    | 200   | 400 | 1000 | 1000 | 800 | 1450 | 725 | 290  | 2 DV-C4/ 60 |
| FRU 20/ 5-DV | 2000     | 500       | 400    | 200   | 550 | 1250 | 700  | 800 | 1750 | 525 | 300  | 2 DV-C4/ 60 |
| FRU 20/ 8-DV | 2000     | 800       | 700    | 200   | 550 | 1250 | 1000 | 800 | 1750 | 725 | 370  | 2 DV-D4/120 |
| FRU 25/ 5-DV | 2500     | 500       | 400    | 250   | 650 | 1500 | 700  | 800 | 2000 | 525 | 350  | 2 DV-C4/ 75 |
| FRU 25/ 8-DV | 2500     | 800       | 700    | 250   | 650 | 1500 | 1000 | 875 | 2000 | 725 | 460  | 2 DV-D4/120 |
| FRU 30/ 5-DV | 3000     | 500       | 400    | 250   | 750 | 1750 | 700  | 875 | 2350 | 550 | 450  | 2 DV-D4/120 |
| FRU 30/ 8-DV | 3000     | 800       | 700    | 250   | 750 | 1750 | 1000 | 875 | 2350 | 725 | 510  | 2 DV-D4/120 |
| FRU 30/10-DV | 3000     | 1000      | 900    | 250   | 750 | 1750 | 1200 | 900 | 2350 | 925 | 600  | 2 DV-D4/160 |

Other dimensions on request

Subject to technical change




| Table 2      |          |           |     |     |        |       |      |     |     |      |      | К           |
|--------------|----------|-----------|-----|-----|--------|-------|------|-----|-----|------|------|-------------|
| Туре         | Principa | l dimensi | ons |     | Weight | Drive |      |     |     |      |      |             |
|              | Α        | В         | С   | D   | Е      | F     | G    | н   | Т   | к    | (kg) |             |
| FRU 40/ 3-DV | 4000     | 300       | 400 | 200 | 1200   | 2000  | 550  | 415 | 700 | 900  | 490  | 2 DV-D4/120 |
| FRU 40/ 5-DV | 4000     | 500       | 600 | 250 | 1200   | 2000  | 750  | 465 | 750 | 1100 | 540  | 2 DV-D4/120 |
| FRU 40/ 8-DV | 4000     | 800       | 900 | 250 | 1200   | 2000  | 1050 | 465 | 750 | 1400 | 650  | 2 DV-D4/160 |
| FRU 50/ 3-DV | 5000     | 300       | 400 | 200 | 1000   | 2750  | 550  | 415 | 700 | 900  | 620  | 2 DV-D4/160 |
| FRU 50/ 5-DV | 5000     | 500       | 600 | 250 | 1000   | 2750  | 750  | 465 | 750 | 1100 | 660  | 2 DV-D4/160 |
| FRU 50/ 8-DV | 5000     | 800       | 900 | 250 | 1000   | 2750  | 1054 | 465 | 850 | 1500 | 840  | 2 DV-E4/220 |
| FRU 60/ 3-DV | 6000     | 300       | 400 | 200 | 1000   | 3000  | 554  | 415 | 850 | 1000 | 780  | 2 DV-E4/220 |
| FRU 60/ 5-DV | 6000     | 500       | 600 | 250 | 1000   | 3000  | 754  | 465 | 850 | 1200 | 850  | 2 DV-E4/220 |
| FRU 60/ 8-DV | 6000     | 800       | 900 | 250 | 1000   | 3000  | 1054 | 465 | 850 | 1500 | 970  | 2 DV-E4/220 |


Other dimensions on request

### **Optional types of support**

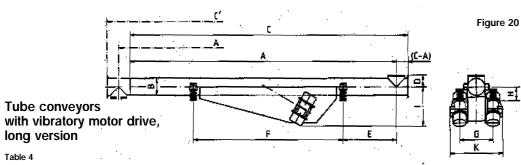
#### Figure 18a



### Totally enclosed conveying troughs



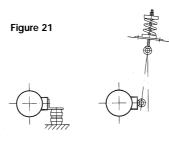
Subject to technical change


Tube conveyors with vibratory motor drive, short version

|                  |          |         |         |      |     |     |      | A   | F   |     | E   |             |                 |
|------------------|----------|---------|---------|------|-----|-----|------|-----|-----|-----|-----|-------------|-----------------|
| Table 3          |          |         |         |      |     |     |      |     |     |     |     |             | K               |
| Туре             | Princi   | pal dim | ensions | 6    |     |     |      |     |     |     |     | Weight      | Drive           |
|                  | Α        | В       | С       | C'   | D   | Ε   | F    | G   | н   | I   | К   | (kg)        |                 |
| FRO 16/2 -DV     | 1600     | 200     | 1750    | 1900 | 150 | 0   | 1000 | 370 | 180 | 600 | 500 | 165         | 2 DV-B4/ 45     |
| FRO 16/2,5-DV    | 1600     | 250     | 1775    | 1950 | 175 | 0   | 1000 | 425 | 180 | 625 | 500 | 170         | 2 DV-B4/ 45     |
| FRO 16/3 -DV     | 1600     | 300     | 1800    | 2000 | 200 | 0   | 1000 | 480 | 180 | 650 | 500 | 180         | 2 DV-B4/ 45     |
| FRO 20/2 -DV     | 2000     | 200     | 2150    | 2300 | 150 | 200 | 1250 | 370 | 180 | 600 | 500 | 180         | 2 DV-B4/ 45     |
| FRO 20/2,5-DV    | 2000     | 250     | 2175    | 2350 | 175 | 200 | 1250 | 425 | 180 | 625 | 500 | 190         | 2 DV-B4/ 45     |
| FRO 20/3 -DV     | 2000     | 300     | 2200    | 2400 | 200 | 200 | 1250 | 480 | 180 | 650 | 500 | 200         | 2 DV-B4/ 45     |
| FRO 25/2 -DV     | 2500     | 200     | 2650    | 2800 | 150 | 350 | 1500 | 370 | 180 | 600 | 500 | 200         | 2 DV-B4/ 45     |
| FRO 25/2,5-DV    | 2500     | 250     | 1675    | 2850 | 175 | 350 | 1500 | 425 | 180 | 625 | 500 | 240         | 2 DV-C4/ 60     |
| FRO 25/3 -DV     | 2500     | 300     | 2700    | 2900 | 200 | 350 | 1500 | 480 | 180 | 650 | 500 | 250         | 2 DV-C4/ 60     |
| FRO 30/2 -DV     | 3000     | 200     | 3150    | 3300 | 150 | 500 | 1750 | 370 | 180 | 600 | 500 | 240         | 2 DV-C4/ 60     |
| FRO 30/2,5-DV    | 3000     | 250     | 3175    | 3350 | 175 | 500 | 1750 | 425 | 180 | 625 | 500 | 250         | 2 DV-C4/ 60     |
| FRO 30/3 -DV     | 3000     | 300     | 3200    | 3400 | 200 | 500 | 1750 | 480 | 180 | 650 | 500 | 260         | 2 DV-C4/ 60     |
| Other dimensions | on reque | st      |         |      |     |     |      |     |     |     | S   | ubject to t | echnical change |

<u>(</u>

A


С



|                |        |         |         |      |        |       |      |     |     |     |      | •    |             |
|----------------|--------|---------|---------|------|--------|-------|------|-----|-----|-----|------|------|-------------|
| Туре           | Princi | pal dim | ensions |      | Weight | Drive |      |     |     |     |      |      |             |
|                | Α      | В       | С       | C'   | D      | Е     | F    | G   | н   | Т   | к    | (kg) |             |
| FRO 40/2 -DV   | 4000   | 200     | 4150    | 4300 | 150    | 800   | 2250 | 450 | 180 | 600 | 750  | 360  | 2 DV-C4/ 75 |
| FRO 40/2,5-DV  | 4000   | 250     | 4175    | 4350 | 175    | 800   | 2250 | 500 | 180 | 600 | 800  | 420  | 2 DV-D4/120 |
| FRO 40/3 -DV   | 4000   | 300     | 4200    | 4400 | 200    | 800   | 2250 | 550 | 205 | 600 | 900  | 460  | 2 DV-D4/120 |
| FRO 40/3,5-DV  | 4000   | 350     | 4225    | 4450 | 225    | 800   | 2250 | 600 | 205 | 600 | 950  | 480  | 2 DV-D4/120 |
| FRO 50/2,5-DV  | 5000   | 250     | 5175    | 5350 | 175    | 1000  | 3000 | 500 | 205 | 650 | 850  | 500  | 2 DV-D4/120 |
| FRO 50/3 -DV   | 5000   | 300     | 5200    | 5400 | 200    | 1000  | 3000 | 550 | 205 | 650 | 900  | 540  | 2 DV-D4/120 |
| FR'O 50/3,5-DV | 5000   | 350     | 5225    | 5450 | 225    | 1000  | 3000 | 600 | 205 | 650 | 950  | 570  | 2 DV-D4/160 |
| FRO 60/2,5-DV  | 6000   | 250     | 6175    | 6350 | 175    | 1500  | 3500 | 500 | 205 | 650 | 850  | 600  | 2 DV-D4/160 |
| FRO 60/3 -DV   | 6000   | 300     | 6200    | 6400 | 200    | 1500  | 3500 | 550 | 205 | 650 | 900  | 650  | 2 DV-D4/160 |
| FRO 60/3,5-DV  | 6000   | 350     | 6225    | 6450 | 225    | 1500  | 3500 | 600 | 205 | 700 | 1025 | 800  | 2 DV-E4/220 |
|                |        |         |         |      |        |       |      |     |     |     |      |      |             |

andere Abmessungen auf Anfrage

Optional types of support



Änderungen vorbehalten



Figure 22 Vibratory tube conveyors for a plastic works

Figure 19



Figure 23 Bin discharge vibratory conveyors with wear lining

Open trough conveyors with electromagnetic drive, short version

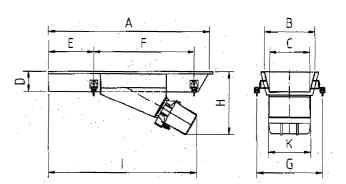



Figure 24

#### Table 5

| Туре        |      | Princip | oal dime | ensions |     |     |      |     |     |      |     | Weight | D  | rive | Contro |
|-------------|------|---------|----------|---------|-----|-----|------|-----|-----|------|-----|--------|----|------|--------|
|             |      | Α       | В        | с       | D   | Е   | F    | G   | н   | I    | К   | (kg)   |    |      | (Туре) |
| FRU 6,5/3   | -MX  | 650     | 300      | 220     | 150 | 200 | 500  | 450 | 530 | 850  | 360 | 70     | МΧ | 400  | VST 3  |
| FRU 6,5/4   | -MX  | 650     | 400      | 320     | 150 | 200 | 500  | 550 | 530 | 850  | 360 | 72     | МХ | 400  | VST 3  |
| FRU 8/3     | -MX  | 800     | 300      | 220     | 180 | 250 | 700  | 450 | 530 | 1000 | 360 | 76     | мх | 400  | VST 3  |
| FRU 8/4     | -MX  | 800     | 400      | 320     | 180 | 250 | 700  | 550 | 530 | 1000 | 360 | 80     | МΧ | 400  | VST 3  |
| FRU 8/5     | -MX  | 800     | 500      | 420     | 180 | 250 | 700  | 650 | 530 | 1000 | 360 | 83     | МΧ | 400  | VST 3  |
| FRU 10/3    | -MX  | 1000    | 300      | 200     | 200 | 300 | 800  | 450 | 550 | 1175 | 360 | 85     | мх | 400  | VST 3  |
| FRU 10/4    | -MX  | 1000    | 400      | 300     | 200 | 300 | 800  | 550 | 640 | 1250 | 420 | 145    | ΜХ | 1200 | VST 15 |
| FRU 10/5    | -MX  | 1000    | 500      | 400     | 200 | 300 | 800  | 650 | 640 | 1250 | 420 | 150    | ΜХ | 1200 | VST 15 |
| FRU 10/6,5  | -MX  | 1000    | 650      | 550     | 200 | 300 | 800  | 800 | 640 | 1250 | 420 | 160    | МХ | 1200 | VST 15 |
| FRU 12,5/3  | -MX  | 1250    | 300      | 200     | 200 | 350 | 950  | 450 | 640 | 1350 | 420 | 155    | мх | 1200 | VST 15 |
| FRU 12,5/4  | -MX  | 1250    | 400      | 300     | 200 | 350 | 950  | 550 | 640 | 1350 | 420 | 160    | МΧ | 1200 | VST 15 |
| FRU 12,5/5  | -MX  | 1250    | 500      | 400     | 200 | 350 | 950  | 650 | 640 | 1350 | 420 | 170    | МΧ | 1200 | VST 15 |
| FRU 12,5/6, | 5-MX | 1250    | 650      | 550     | 200 | 350 | 950  | 800 | 640 | 1350 | 420 | 175    | МХ | 1200 | VST 15 |
| FRU 16/3    | -MX  | 1600    | 300      | 200     | 200 | 450 | 1000 | 450 | 640 | 1600 | 420 | 170    | МХ | 1200 | VST 15 |
| FRU 16/4    | -MX  | 1600    | 400      | 300     | 200 | 450 | 1000 | 550 | 640 | 1600 | 420 | 175    | МΧ | 1200 | VST 15 |
| FRU 16/5    | -MX  | 1600    | 500      | 400     | 200 | 450 | 1000 | 650 | 680 | 1800 | 480 | 210    | МΧ | 2000 | VST 15 |
| FRU 16/6,5  | -MX  | 1600    | 650      | 550     | 200 | 450 | 1000 | 800 | 680 | 1800 | 480 | 230    | МХ | 2000 | VST 15 |
| FRU 20/3    | -MX  | 2000    | 300      | 200     | 200 | 500 | 1300 | 450 | 680 | 2050 | 480 | 210    | МХ | 2000 | VST 15 |
| FRU 20/4    | -MX  | 2000    | 400      | 300     | 200 | 500 | 1300 | 550 | 680 | 2050 | 480 | 230    | МΧ | 2000 | VST 15 |
| FRU 20/5    | -MX  | 2000    | 500      | 400     | 200 | 500 | 1300 | 650 | 680 | 2050 | 480 | 250    | МΧ | 2000 | VST 15 |
| FRU 20/6,5  | -MX  | 2000    | 650      | 550     | 200 | 500 | 1300 | 800 | 780 | 2050 | 620 | 360    | ΜХ | 4000 | VST 15 |

Longer models with multiple vibrators on request

Subject to technical change

When using these units in bin discharge applications, the bin outlet diameter, the bulk material slope angle and the inclination of the trough are important factors in addition to the discharge capacity. The bulk material slope angle determines the minimum trough length (see Figure 25).

It should also be observed in the planning stage that the discharge capacity is considerable affected by the bin outlet configuration. The maximum discharge capacity can only be obtained if the load on the discharge trough imposed by the material column is largely reduced. Figure 25 shows a bin outlet appropriately designed to effectively reduce the load on the trough.

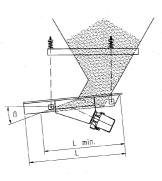



Figure 26

# Tube conveyors with electromagnetic drive

Table6

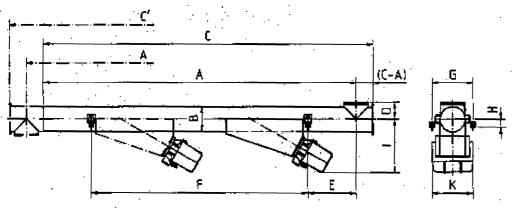



Bild 26

| Туре           | Princ | ipal di | mensio | ns    |     |     |      |     |     | We  | Control |      |           |         |
|----------------|-------|---------|--------|-------|-----|-----|------|-----|-----|-----|---------|------|-----------|---------|
|                | Α     | В       | с      | C′    | D   | Е   | F    | G   | Н   | I   | к       | (kg) |           | (Туре)  |
| FRO 7,5/1,5-MX | 750   | 150     | 875    | 1000  | 125 | 0   | 550  | 300 | 80  | 525 | 360     | 70   | 1 MX 400  | VST 3.  |
| FRO 10/1,5-MX  | 1000  | 150     | 1125   | 1250  | 125 | 0   | 750  | 300 | 80  | 525 | 360     | 73   | 1 MX 400  | VST 3.  |
| FRO 15/1,5-MX  | 1500  | 150     | 1625   | 1750  | 125 | 0   | 1000 | 300 | 80  | 525 | 360     | 77   | 1 MX 400  | VST 3.  |
| FRO 20/1,5-MX  | 2000  | 150     | 2125   | 2250  | 125 | 200 | 1250 | 300 | 80  | 575 | 420     | 145  | 1 MX 1200 | VST 15. |
| FRO 25/1,5-MX  | 2500  | 150     | 2625   | 2750  | 125 | 350 | 1500 | 300 | 80  | 575 | 420     | 153  | 1 MX 1200 | VST 15. |
| FRO 7,5/2 -MX  | 750   | 200     | 900    | 1050  | 150 | 0   | 550  | 350 | 80  | 525 | 360     | 78   | 1 MX 400  | VST 3.  |
| FRO 10/2 -MX   | 1000  | 200     | 1150   | 1300  | 150 | 0   | 750  | 350 | 80  | 525 | 360     | 80   | 1 MX 400  | VST 3.  |
| FRO 15/2 -MX   | 1500  | 200     | 1650   | 1800  | 150 | 0   | 1000 | 350 | 80  | 600 | 420     | 152  | 1 MX 1200 | VST 15. |
| FRO 20/2 -MX   | 2000  | 200     | 2150   | 2300  | 150 | 200 | 1250 | 350 | 80  | 600 | 420     | 162  | 1 MX 1200 | VST 15. |
| FRO 25/2 -MX   | 2500  | 200     | 2650   | 2800  | 150 | 350 | 1500 | 350 | 80  | 600 | 420     | 170  | 1 MX 1200 | VST 15. |
| FRO 30/2 -MX   | 3000  | 200     | 3150   | 3300  | 150 | 500 | 1750 | 350 | 80  | 650 | 480     | 217  | 1 MX 2000 | VST 15. |
| FRO 40/2 -MX   | 4000  | 200     | 4150   | 43900 | 150 | 500 | 3000 | 350 | 100 | 600 | 420     | 320  | 1 MX 1200 | VST 15. |
| FRO 10/2,5 -MX | 1000  | 250     | 1175   | 1350  | 175 | 0   | 750  | 400 | 80  | 550 | 420     | 155  | 1 MX 1200 | VST 15. |
| FRO 15/2,5 -MX | 1500  | 250     | 1675   | 1850  | 175 | 0   | 1000 | 400 | 80  | 550 | 420     | 163  | 1 MX 1200 | VST 15. |
| FRO 20/2,5 -MX | 2000  | 250     | 2175   | 2350  | 175 | 200 | 1250 | 400 | 80  | 550 | 420     | 174  | 1 MX 1200 | VST 15. |
| FRO 25/2,5 -MX | 2500  | 250     | 2675   | 2850  | 175 | 350 | 1500 | 400 | 80  | 600 | 480     | 208  | 1 MX 2000 | VST 15. |
| FRO 30/2,5 -MX | 3000  | 250     | 3175   | 3350  | 175 | 500 | 1750 | 420 | 100 | 600 | 480     | 240  | 1 MX 2000 | VST 15. |
| FRO 40/2,5 -MX | 4000  | 250     | 4175   | 4350  | 175 | 500 | 3000 | 420 | 100 | 550 | 420     | 310  | 2 MX 1200 | VST 15. |
| FRO 50/2,5 -MX | 5000  | 250     | 5175   | 5350  | 175 | 500 | 4000 | 420 | 100 | 600 | 480     | 412  | 2 MX 2000 | VST 15. |
| FRO 15/3 -MX   | 1500  | 300     | 1700   | 1900  | 200 | 0   | 1000 | 450 | 80  | 625 | 480     | 225  | 1 MX 2000 | VST 15. |
| FRO 20/3 -MX   | 2000  | 300     | 2200   | 2400  | 200 | 200 | 1250 | 450 | 80  | 625 | 480     | 236  | 1 MX 2000 | VST 15. |
| FRO 30/3 -MX   | 3000  | 300     | 3200   | 3400  | 200 | 500 | 1750 | 470 | 100 | 575 | 420     | 340  | 2 MX 1200 | VST 15. |
| FRO 40/3 -MX   | 4000  | 300     | 4200   | 4400  | 200 | 500 | 3000 | 470 | 100 | 625 | 480     | 470  | 2 MX 2000 | VST 15. |
| FRO 50/3 -MX   | 5000  | 300     | 5200   | 5400  | 200 | 500 | 4000 | 470 | 100 | 625 | 480     | 505  | 2 MX 2000 | VST 15. |
| FRO 60/3 -MX   | 6000  | 300     | 6200   | 6400  | 200 | 500 | 5000 | 470 | 100 | 575 | 420     | 710  | 3 MX 2000 | VST 15. |

Other dimensions on request

Subject to technical change

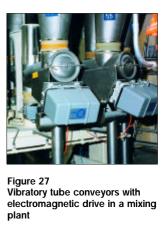





Figure 28 Vibratory tube conveyors with acid-proof coating for a pharmaceutical works

# **Illustrated examples**



Figure 29: Bin discharge vibratory conveyors in a foodstuffs factory



Figure 30 Vibratory tube conveyors with electromagnetic drive in a mixing plant



Figure 31 Vibratory trough conveyors as feed and discharge conveyors in a canning works



Figure 35 The conveying troughs can easily be fitted with sieve inserts



Figure 32 Assembly of vibratory conveyors for ash and slags in a power plant, the lower conveyor designed for reversible operation



Figure 33 Vibratory trough conveyors with integrated screen decks have the advantage of low height. The figure shows a single deck machine with pneumatically operated screen ten-sioning in a foodstuffs factory.



Figure 34: Bin discharge vibratory conveyors in a glass factory



Figure 36 Trough feeders in a canning works; the troughs and hopper walls comming in contact with the product are made of textured plate to prevent the wet slices of vegetables from clinging



Figure 37 Vibratory conveyors in a chemical factory fitted underneath the ceiling



Figure 38 Vibratory conveyors for vertical and horizontal transport in an foodstuffs factory



Figure 39 Mobile furnace charging equipment for feeding brass scrap to a melting furnace

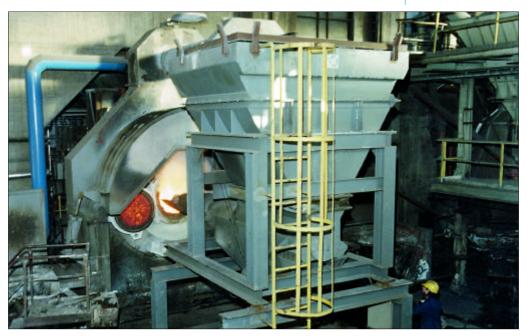



Figure 40: Mobile furnace charging equipment with a vibratory tube conveyor of 550 mm diameter in a lead works

The furnace charging equipment is constructed of heavy duty materials with replaceable wearing plates and exchangeable end pieces to suit the tough environment. The traversing gear can be designed for longitudinal or for transverse movement. For dusty products the feed containers are fitted with suction equipment operating via a surrounding slot.

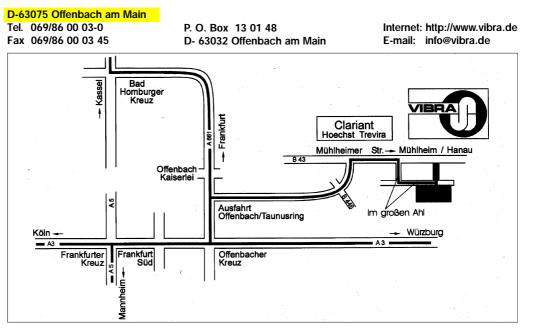


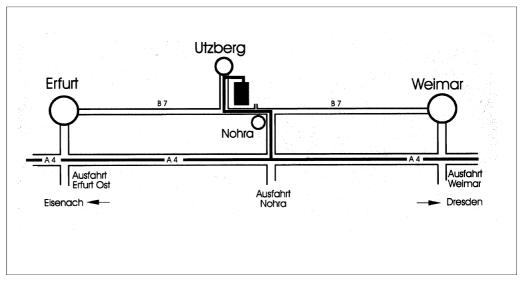

Figure 41 Vibratory tube conveyor as a collecting conveyor under container discharging stations



# Where to find VIBRA

**VIBRA MASCHINENFABRIK** SCHULTHEIS GmbH & Co. Im großen Ahl 47 - 51




# **VIBRA MASCHINENFABRIK** SCHULTHEIS GmbH & Co.

In Addition to its office in Germany, VIBRA has repre-Am Peterborn 3 sentative office in the follo-

Australien Belgien Dänemark Ecuador Finnland Frankreich Großbritannien Indien Israel Italien Korea Malaysia Neuseeland Niederlande Norwegen Schweden Schweiz Taiwan Türkei Ungarn

wing countries:

### Branch Utzberg/Weimar D-99428 Utzberg/Weimar Tel. 03 62 03/5 12 58 Fax 03 62 03/5 12 59

